The PHENIX Muon Trigger Upgrade Level-1 Trigger System

Todd Kempel

for the PHENIX Collaboration

Department of Physics and Astronomy Iowa State University

February 14, 2010

•000

Motivation: Flavor Separated Longitudinal Quark Distributions

Probes Sensitive to Quark Flavors in Polarized Protons:

SIDIS

Advantage:

Only probing one proton.

Disadvantage:

Unfolding depends heavily on fragmentation functions.

W production in p+p

Advantage:

Clean probe. No fragmentation function.

Disadvantage:

Probing 2 protons. Can't measure W directly.

W Production Basics

PHENIX can measure leptonic decays:

$$u\bar{d} \rightarrow W^+ \rightarrow I^+ \nu_I$$

 $\bar{u}d \rightarrow W^- \rightarrow I^- \bar{\nu}_I$

Since the W is maximally parity violating, asymmetries relate directly to the helicity structure of the proton.

Single Longitudinal Spin Asymmetry:

$$A_L^{W^+} = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \propto \frac{\Delta \bar{d}(x_1) u(x_2) - \Delta u(x_1) d(x_2)}{u(x_1) \bar{d}(x_2) + \bar{d}(x_1) u(x_2)}$$

(Similar expression for W^- to get $\Delta \bar{u}$ and Δd)

The PHENIX Experiment

High Rate Capability and Granularity with a Limited Acceptance

Central Arm Electron Detection PHENIX Detector PC3 PC3 RICH PC1 PSC RICH PC1 PSC RICH PC1 PSC RICH PC1 PSC PSC RICH PSC PSC RICH PSC

 $|\eta| < 0.35, \, \Delta \phi = 2 \times \frac{\pi}{2}$

Already capable of measuring Ws. (See talk by John Haggerty in session S8)

Forward Muon Spectrometers

• 1.2 < η < 2.2, $\Delta \phi = 2\pi$

In need of a trigger upgrade to measure Ws (next slide)

One Solution: Momentum Selectivity in the Lvl-1 Trigger!

Trigger Concept

- Instrument Muon Tracker Front End Electronics (FEEs) with Trigger Readout
- Install Resistive Plate Chambers (RPCs) to determine crossing and reject beam-related background
- 3. Install newly designed Level-1 electronics to make trigger decision

Hardware Chain

- Data from detectors goes to amplifier/discriminator (ADTX) boards
- ADTX boards are 'merged' by the MRG boards, which transmit to the data collection interface (DCMIF) and Local-Level 1 (LL1) boards
- LL1 decision is passed to a global-level 1 (GL1), and data is written out by a data collection module (DCM)

Trigger Hardware Concept

- Data comes in from MTP fibers
- Trigger 'tiles' demux the data and run the algorithm
- Baseboard FPGA recieves trigger decision from tiles and sends it out through VME backplane
- Commands are sent to 'baseboard' FPGA over VME interface
- Baseboard FPGA controls tile power through i²c interface

Trigger Hardware

9U VME 'baseboard'

- Tiles and Baseboard populated with Virtex-5 FPGAs
- 4 Avago SNAP-12 fiber recievers on each board will operate at 2.8 Gbps/fiber
- Tiles constructed with Rogers material instead of traditional FR4 to facilitate high speed communication.

Muon Tracker Front-End Electronics

 North Arm was installed and tested during spring 2009 Physics run.

South Arm was installed during summer 2009 shutdown and is currently being commissioned.

Resistive Plate Chambers

Peak Width \approx 3 ns. Measured with half octant prototype during p+p running in 2009. (Bunch crossing width is 106 ns).

- Prototype RPC was installed and tested during 2009 Physics Run.
- North Arm Detector was installed during summer 2009 shutdown.
- South Arm Detector will be installed during summer 2010.
- ➤ For more on the RPCs see the talk by John Hill in session S8 or various talks in this session.

Integrating Level-1 Electronics with the Experiment

Front-End → LL1 board

- Tested and found to be stable
- Mapping of incoming channels has been tested and is working.

$LL1 \rightarrow GL1$

- Tested and stable.
- ► Full communication chain is slightly slower than other triggers, and we are working to time it in.

Schedule

- ➤ **Spring 2010:** Install North Arm Level-1 Trigger Electronics
- Summer 2010: Install South Arm Level-1 Trigger Electronics, Integrate RPCs
- Winter 2010/2011: Commission Level-1 electronics and take data. Ready for W physics!

